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ABSTRACT: Compositional data are ubiquitous in chemistry
and materials science: analysis of elements in multicomponent
systems, combinatorial problems, etc., lead to data that are
non-negative and sum to a constant (for example, atomic
concentrations). The constant sum constraint restricts the
sampling space to a simplex instead of the usual Euclidean
space. Since statistical measures such as mean and standard
deviation are defined for the Euclidean space, traditional
correlation studies, multivariate analysis, and hypothesis testing
may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition
measurements that are used for data analytics may not include all of the elements contained in the material; that is, the
measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis
must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical
tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We
introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the
spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical
framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

KEYWORDS: high-throughput screening, electrocatalyst, inkjet printing, sputtering, thin-films, interpolation, compositional data,
big data, complex data, statistical data analysis

I. INTRODUCTION

Recent and forthcoming advances in instrumentation are
creating materials science data sets that are not amenable to
the application of the existing, standard methods of
analysis.1−12 Present-day data do not “speak for themselves”
as suggested by the familiar slogan, which was coined before the
modern era of complex high-throughput data. Rather, one has
to learn from data, and statistical learning and modeling provide
a means for extracting knowledge from data.13,14 Traditional
techniques are often inadequate not merely because of the size
in bytes of the data sets but also because of the complexity of
modern data sets.1−6 At the same time, it is precisely the
richness and complexity of new data sets that provide materials
science with a wealth of information. Indeed, most of the
research progress expected from such sets inherently rests in
their enormity and complexity which enable data-driven
decisions. Developing and applying statistically sound methods
that allow one to accurately represent and interpret data is very
important for data-driven materials optimization.
Traditionally, research in materials science has focused on

synthesis, characterization and property measurement for select
compositions of interest. With the quest for rapid discovery of
functional materials, large scale combinatorial experiments that
produce composition-property maps of higher order composi-
tion spaces have become increasingly important, in particular
due to the ability to tailor material properties using multiple
elements.6,15,16 Because individual components of a composi-

tion are not free to vary independently, each component cannot
be interpreted without relating it to any of the other
components. This makes compositional data intrinsically
multivariate. Statistical methods for compositional data analyses
have been and continue to be developed in the field of statistics
since the 1980s,17,18 but have not been readily applied to the
relevant topics in materials science.
The extensive amount of relevant work on statistical analysis

of compositional data already accomplished in disciplines
outside of materials science does not allow us to offer a
complete review of all aspects of these complex topics and
problems, and an interested reader is referred to works in
bibliography.18−22 The structure of the paper is as follows: In
section II, we discuss challenges related to compositional data
processing together with some principled methods of CDA.
Section III describes an application of such methods for spatial
interpolation of compositional data.

II. COMPOSITIONAL DATA

It is common to express elemental concentrations as
percentages, so that the sum of the concentrations is 100%.
Data expressed as part of a whole are called compositional data,
and the study of such data is a relatively new part of statistics.22
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The core concepts are presented here through illustrative
examples from solid state chemistry.
II.A. Closure Effects. Induced Correlations. The traditional

way to describe the pattern of variability of data is through the
estimates of the raw mean, covariance, and correlation matrices.
Individual components of compositional data are not free to
vary independently: if the proportion of one component
decreases, the proportion of one or more other components
must increase, thus leading an artificial correlation that is, in
fact, caused by the constant sum constraint. Indeed, the closure,
or in other words the constant sum constraint, affects
correlation between variables.24 Consider for example a set of
N-part compositions that can be treated as a M × N matrix W
where N is the number of elements in the composition, and M
is the number of measurements, or samples, with the
component sum Σk=1

N wik = 1, where i = 1, ..., M. Let us
denote Yk = {wik}, i = 1, ..., M, to be the k-th column of the
matrix W. Since

∑ =
=

Y Ycov( , ) 0k
j

N

j
1

we have

∑ = − ≠Y Y Y j kcov( , ) var( ),k j k (1)

so the sum of the covariances of any variable is negative. Thus,
each variable must be negatively correlated with at least one
other variable and, in general, there is a strong bias toward
negative correlation between variables of (relatively) large
variance. One of the important consequences of closure for
materials science is that usual correlation analysis can produce
misleading associations between elemental concentrations.
Illustrative Example. As an example, consider a set of M

materials each containing N elements for which we would like
to ascertain if there is correlation in the concentration of
element 1 with respect to the other elements. Figure 1a shows
correlation coefficients for a synthetic data set created by
generating random quantities of four elements (N = 4) from
normal distributions. Because of the randomness, the element-
pairwise correlation over the M = 400 materials is negligible
when considering the quantities of the elements, which is non-
normalized data. Measurements of the (normalized) composi-
tion of each material produce the M × N closed data set {wik}.
Using this simulated data, the Pearson correlation coefficient
4Ck,l of the concentration vectors Yk and Yl (elements k and l)
can be calculated, where the superscript 4 indicates the
dimension of the composition space (N = 4). Consider an
extension of this example in which the concentration of the
fourth element cannot be measured so instead composition
measurements are made in the N = 3 space and correlations
3Ck,l are calculated, and a similar exercise can by performed for
N = 2.
The values of NCk,l plotted in Figure 1b demonstrate some

limitations of the usual statistics. Indeed, the correlation
coefficients are skewed toward negative values because of the
normalization-induced correlation, as indicated by eq 1. In fact,
for the N = 2 case, the correlation coefficient is −1 because due
to the normalization xi,2 = 1 − xi,1. In other words, correlation
structure of a composition cannot be used to interpret
correlations among the measured elemental concentrations
and vice versa. It should be mentioned that other distance-
based statistics like means, variances and standard deviations, as

well as tasks such as clustering and multidimensional scaling
exhibit similar limitations when applied to compositional data.

Subcompositional Coherence. An n-part composition (x1,
x2, ..., xn) with Σi=1

n xi =1 is called a subcomposition of an m-part
composition (x1, x2, ..., xm) with Σi=1

m xi =1, if m > n and (x1, ...,
xn) is a subset of the elements (x1,..., xm). A consequence of the
constant sum constraint for compositional data is that
subcompositions may not reflect the variations present in the
parent data, and as a result covariance of elements may change
substantially between different subsets of the parent data set.
Every composition is a sub- or a parent- composition
depending on the objective of an experiment or the goal of
data analysis. An experimentalist or a data analyst may not be
able to take into account all elements (some elements may not
be accessible), or may disregard some of the available elements
if they are not pertinent to the objective. The following
principle of subcompositional coherence is an important
concept of compositional analysis: any compositional data
analysis should be done in a way that produces the same results
in a subcomposition, regardless of whether we analyzed only
that subcomposition or a parent composition.18 Subcomposi-
tional incoherence of Pearson correlation coefficient is
demonstrated in Figure 1, where for a given pair of elements,
NCk,l varies with the order N of the composition space.
These effects of closure on statistical analysis of composi-

tional data, induced correlations and subcompositional
incoherence, make traditional statistical methods invalid, and
artificial correlation obtained by applying such techniques may
lead to false scientific discoveries and incorrect predictions.
Moreover, methods that are based on a correlation matrix of
observations, such as factor analysis, principal component
analysis (PCA), cluster analysis,13,14 kriging interpolation25 to
name just a few, would lead to inaccurate, warped results. Thus,
correlation analysis, and multivariate statistical analysis in

Figure 1. (a) Set of 100 compositions generated from normal
distributions of element quantities with normalizations corresponding
to the quaternary (N = 4), ternary (N = 3), and binary (N = 2)
composition spaces. (b.) The correlation of the concentration of
element 1 with each other element; the magnitude change
demonstrates induced correlation; the variation with respect to N
shows subcompositional incoherence.
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general, of compositional data require special techniques in
order to avoid producing false results.
II.B. Principled Analysis of Compositional Data.

Sample Space. The fundamental building block of statistical
analysis is the probabilistic model. A well-defined sample space
is one of the basic elements in a probabilistic model. The
constraint of constant sum does not allow the components of a
composition to vary from −∞ to ∞. Because of the constraint,
an N-element composition is confined to a restricted part of the
Euclidean space called the simplex SN = {x; xk ≥ 0, ΣN

k=1 xk =
1}.18 All standard statistical methods assume that the sample
space is the entire Euclidean space, while compositional data
clearly do not satisfy this assumption. In order to deal with the
closure effects described in the previous section, an approach
based on a family of transformations, the so-called logratio
transformations, has been introduced.18 These transformations
based on logarithm of ratios of compositions map the
components of the compositions onto a Euclidean space,
thus enabling one to apply classical statistical methods. In what
follows, we briefly describe a few key concepts of such
analysis.18,21,22 The so-called alr transform is defined for a given
N-element composition x as an (N − 1)-element vector z with
the following components:

= = −alr x x x xz x( ) (ln( / ), ..., ln( / ))N N N1 1 (2)

where one of the composition components is chosen as
common divisor. This logratio transform is invertible since
there is a one-to-one correspondence between any N-part
composition x and its logratio vector z. This means that any
statement about the components of a composition can be
expressed in terms of logratios and vice versa. By defining the
sum

∑ ∑= − =
≠ ≠

s z z x xexp( ) /i j i j i j i j i

the transformation from log ratio to composition coordinates is
given by

= +x s1/( 1)i i (3)

Because alr depends on the choice of xN, this transform is not
employed in our calculations and a more suitable transform is
discussed below. In section III we utilize eqs 2 and 3 only to
illustrate the results of spatial compositional interpolation.
To build a vector space structure on the simplex the

following operations were introduced by Aitchison. The closure
operation C is defined as

= = + +

+ + ≥ ∈ ⊂ −

C u u u u u

u u u u S R

x

x

[ , ..., ] ( /( ... ), ...,

/( ... )); 0,
N N

N N i
N N

1 1 1

1
1

where ui represent the raw data such as element quantities.
Perturbation ⊕ is an equivalent of addition in the Euclidean
space and defined as

= ⊕

= ∈ ⊂ −C x y x y x y S R

w x y

w x y[ , , ..., ]; , ,N N
N N

1 1 2 2
1

(4)

Powering ⊙ is an equivalent of multiplication a vector by a
scalar and defined as

= ⊙ = ∈ ∈a C x x x S a Rw x x[ , , ..., ]; ,a a
N

a N
1 2

,

Aitchison inner product replaces the Euclidean inner product
and defined as

∑ ∑⟨ ⟩ =

∈ ⊂

= >

−

N x x y y

S R

x y

x y

, 1/ ln( / )ln( / );

,

A

N

i

N

j i i j i j

N N

1

1
(5)

Thus, the norm of a vector, or its simplicial length, is ∥x∥ =
√⟨x,y⟩A. This enables one to compute distances between
compositional vectors, projections of compositional vectors,
etc.
The Aitchison distance is defined as

∑ ∑= −

∈ ⊂

= >

−

d N x x y y

S R

x y

x y

( , ) {1/ [ln( / ) ln( / )] } ;

,

N

i

N

j i i j i j

N N

A 1
2 1/2

1 (6)

Establishing a metric vector space structure in the simplex and
utilizing orthonormal bases facilitates application of complex
statistical methods to analysis of compositional data. The so-
called isometric logratio (ilr) transform has important
conceptual advantages and enables one to use balances, a
particular form of ilr coordinates in an orthonormal basis. A
balance is defined as

= +b pq p q g x g x([ /( )] )ln( ( )/ ( ))pq p q
1/2

(7)

where g(·) is the geometric mean of the argument, xp is the
group with p parts and xq is the group of q parts which are
obtained by sequential binary partition (see works21,23 and
references there). However, there is no obvious “optimal” basis,
and the compositional biplot approach should be used to find
one.18,23 For an analysis to be subcompositionally coherent, it
suffices to define variables using the ratios of the composition
values. The quantities x1/x2 and ln(x1/x2) are invariant under
changes of the composition order as they quantify the relative
magnitudes of elemental concentration rather than their
absolute values, though the interpretation of the results in
terms of the original variables is not always trivial. To study
correlation structure of compositions Aitchison introduced a
variation matrix T = { τij } of dimensions N × N, with the
elements

τ = Y Yvar[ln( / )]ij i j (8)

When τij are large, there is no proportionality between the
corresponding elements. If, however, the elements i and j are
exactly proportional then τij = 0. The scale of these variations
can be determined by introducing total variance as a normalized
sum of the variances of all logratios

∑ ∑ τ=
= =

V N1/(2 )
N

i

N

j ijtot 1 1 (8a)

The variation matrix T (eqs 8, 8a) is instrumental in the
analysis of associations between elemental concentrations in
compositions. Such analysis will be discussed in greater detail in
our forthcoming paper dedicated to covariance structures of
screening libraries. In what follows we apply balances (eq 7) to
spatial interpolation of compositional data.

III. INTERPOLATION OF COMPOSITIONAL DATA
III.A. Interpolation of Compositional Data and

Materials Science: Sputtering. Section II highlighted the
importance of using logratio variables for statistical analysis and
in this section we use spatial interpolation of composition
measurements, a standard operation in combinatorial research,
to demonstrate how behavior of logratio variables differs from
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that of raw compositional variables. To create a synthetic data
set, we employ a common combinatorial synthesis technique,
multisource cosputtering of a composition spread thin film.
Combinatorial sputtering is commonly used for synthesis of
binary, ternary, and quaternary thin film libraries.26 In general,
spatial variation of the composition of each of the components
is dependent on several parameters, such as sputtering target,
sputtering gas, reactive gases, deposition geometry, and
resputtering phenomenon.27 The continuous nature of the
thin films and ability to measure film properties with high
spatial resolution require accurate modeling of spatio-composi-
tional structure to observe meaningful composition-property
studies. The compositions of a continuous film can be
measured using appropriate elemental analysis techniques,
and to enable high throughput and measurement efficiency, it is
desirable to measure compositions on a sparse grid and rely on
spatial interpolation to obtain the full composition map.
Addressing the complex nature of compositional variation as a
function of the spatial coordinates requires compositional
statistical methods.
Composition libraries containing 4 components can be

deposited onto a substrate using 1 central face-to-face
sputtering source surrounded by 3 tilted sources. The
deposition rate from each of the 4 elemental sources in this
configuration was calculated using a standard sputtering model,
yielding the deposition rate profiles in Figure 2a. To provide
some variability in the deposition rate profiles, different tilt
angles of the sources and overall deposition rates were used in
the model, but we note that these details are inconsequential
for the purposes of generating a demonstration data set. Using
the deposition rate profiles, the elemental compositions were
calculated over a 100 mm × 100 mm square substrate area,
yielding the composition coverage shown in Figure 2.

Figure 2 provides the spatial map of the 4 compositional
variables xi, and in this paper we will assume that accurate,
noise-free compositions measurements are made on a set of 25
substrate positions chosen as a 5 × 5 square grid with 25 mm
spacing. An appropriate spatial interpolation method should at
least guarantee that the non-negativity and constant-sum
constraints are satisfied. In fact, among the conventional
unconstrained interpolation techniques, linear interpolation
satisfies these requirements. However, usual straightforward
approaches, even if they satisfy the constraints, interpolate each
component xi independently, thus ignoring the inner relation-
ships between the compositional elements. Since our end goal
is to enable the analysis of covariance structure of compositions
without the artifacts of induced correlation and subcomposi-
tional incoherence, an approach that leads to accurate logratio
values employed by the simplicial distance (eq 6) and
compositional covariance matrix T (eq 8) is required. To
achieve this, we utilize a broadly applicable and highly versatile
technique based on kriging.25 The kriging-based interpolation
was computed with R language and environment for statistical
computing28 by applying the R-package “compositions”
developed by van der Boogaart and Tolosana-Delgado.29,30

The method exploits codependences in the composition and
takes into account the spatial covariance structure by modeling
the set of variograms for all possible pairwise balances (eq 7). It
takes into account various effects and parameters including the
nugget effect, the choice of exponential and spherical
variograms which parameters we chose to be 62.5 and 162.0,
respectively. Since this interpolation technique is specialized for
compositional data, we refer to it as “compositional
interpolation” and represent the result of compositional
interpolation of the 25 zi measurements as CompInterp(zi).
To attain an analogous result using traditional linear

Figure 2. (left) Modeled profiles of deposition rate as a function of position on a 100 mm square substrate are shown for 4 elemental deposition
sources. (right) The corresponding elemental compositions are shown for each element as a colored contour plot.
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interpolation, xi and xN can be independently interpolated
followed by calculating zi (eq 2), resulting in a spatial map of zi
referred to as LinInterp(zi). The results of compositional and
linear interpolations and their comparisons with the “perfect”
data calculated from the model compositions of Figure 2 are

shown in Figures 3 and 4. By definition, both interpolation
methods produce exact values at each of the 25 locations in the
sampling grid. The assessment of the performance of a given
interpolation is thus performed by evaluating the absolute
magnitude and pattern of interpolation error in the regions

Figure 3. Interpolation of a 4-element composition. z1: logratio of compositions x1 and x4 calculated from Figure 2 with the 25 sampling points
marked by “×”. LinInterp(z1): log ratio of the linearly interpolation of x1 and x4. CompInterp(z1): log ratio of the compositionally interpolated z1;
the difference between the model data and its linear interpolation; the difference between the model data and its compositional interpolation.

Figure 4. Results of interpolation for z2. See Figure 3 for detailed description.
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between the sampling points (the grid). Compared to linear
interpolation, the compositional interpolation provides more
accurate results and the discrepancy varies smoothly over the
entire interpolation region. It is important to note that artificial
“patchiness” of the linear interpolation would distort simplicial
distances (eq 6) between different compositions. Such
distortions would lead to artificial associations in the analysis
of correlational structure of compositions and, more generally,
to erroneous results in all calculations that involve distances,
e.g. mean and standard deviation.
Provided the compositional interpolation of each zi (eq 2), a

spatial map of xi can be calculated using the inverse
transformation (eq 3). We refer to this spatial map as
CompInterp(xi). This result is compared to the linear
interpolation of xi LinInterp(xi) in Figure 5. It can be seen,
that linear interpolation and compositional interpolation both
perform well for the interpolation of x1, with maximum
deviation of linear interpolation being 0.04 and maximum
deviation of compositional interpolation being 0.02. The
compositional interpolation produces a smoother result due
to the inherent consideration of the spatial covariance structure
of all pairwise balances. While it is worth noting that many
experimental measurements of composition have associated
uncertainties on par with these deviations, this demonstration
data set was chosen to illustrate the difference in behavior of
compositional and linear interpolation. This data set lacked
experimental noise and contained smooth, very slowly varying
functions (Figure 2.). Kriging assumes that the observed values
are a realization of a stochastic process, so the quantitative
advantages of compositional interpolation based on kriging
should become more pronounced as variation of the
composition variables increases. It is worth noting, that there
are other interpolation methods that preserve the non-

negativity and constant-sum constraints such as local sample
mean, inverse distance interpolation, and triangulation (since
the weights they use range from 0 to 1, and sum to unity).
However, unlike the approach developed in refs 29 and 30 and
utilized here, those methods do not take into account the
spatial covariance structure which may be critical for statistical
analysis.
From subcomposition coherence and closure effects of

Figure 1 to the shortcomings of linear interpolation in Figures
2−5, we demonstrate fundamental issues of applying Euclidean-
based methods to compositional data. In the example of spatial
interpolation of compositions, the data vary smoothly as a
function of position, allowing linear interpolation to provide
reasonable results, which are still improved by the use of
simplex-based methods. The shortcomings of Euclidean-based
techniques strongly depend on the sparseness of the measure-
ments and nonlinearity of the measured signals, but on a
fundamental level the use of simplex-based methods generally
provides a more accurate treatment of compositional data. As
combinatorial materials science continues to expand into high
order compositions spaces, the prudent application of statistical
methods developed specifically for CDA will be required to
enable accurate data mining.

IV. CONCLUSIONS
Probably no other field has so much of its data intrinsically
expressed as percentages as do chemistry and materials science.
In this Research Article, we brought the attention of materials
scientists to the importance of CDA. We first demonstrated
that Euclidean-based correlation structure should not be used
to interpret associations among measured elemental concen-
trations. By using simulated data we presented and illustrated
induced correlations and subcompositional incoherence of the

Figure 5. Interpolation of a 4-element composition. x1: Model data taken from Figure 2 with the 25 sampling points marked by “×”. LinInterp (x1):
Linear interpolation of these 25 samples of x1. CompInterp(x1): Result of applying eq 3 to the set of compositionally interpolated logratios; the
difference between the model data and its linear interpolation; the difference between the model data and its compositional interpolation.
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Pearson correlation coefficient. These effects are caused by the
constant sum constraint that restricts the sampling space to a
simplex instead of the usual Euclidean space. Since statistical
measures such as mean, standard deviation, etc., are defined for
the Euclidean space, traditional correlation studies, multivariate
analysis, and hypothesis testing may lead to erroneous
dependencies and incorrect inferences when applied to
compositional data. These issues demonstrate that prior to
applying usual statistical methods data should be transformed
to remove the constant sum constraint. Logratio transforms
remove the data-sum constraint by mapping the components of
the compositions into a Euclidean space, thus enabling one to
apply classical statistical methods. Moreover, a metric vector
space structure can be introduced in the simplex (via the
simplicial metric based on log ratios), thus enabling meaningful
statistical analysis of compositional data. We applied logratio
analysis to interpolation of simulated composition data.
Comparison of a consistent compositional interpolation based
on balances with traditional linear approach revealed
discrepancies between their results that are crucial for correct
statistical analysis of composition-property relationships.
Altogether these results demonstrate the importance of using
adequate, mathematically consistent approaches to composi-
tional data, particularly in high-order composition spaces.
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